Team members and the new closure welding system that seals canisters containing spent fuel. (Photo: DOE)
Teams from the Department of Energy’s Offices of Environmental Management and Nuclear Energy recently collaborated on the Road Ready Demonstration Project by testing new equipment to seal spent nuclear fuel into a safe and transportable system for future shipments out of Idaho.
The ETU 3.0 reactor vessel was lowered into position using construction cranes and mounted on a support structure attached to the building’s foundation. (Photo: Kairos Power)
A reactor vessel has been installed by Kairos Power for its third Engineering Test Unit (ETU 3.0) at the company’s campus in Oak Ridge, Tenn.
(Photo: Idaho National Laboratory)
Following the signing of a new agreement, Kiewit Nuclear Solutions, a subsidiary of Kiewit Corporation, is officially the lead constructor for Oklo’s first commercial Aurora powerhouse, which will be built at Idaho National Laboratory.
The president and government officials at the meeting. (Photo: EPA)
Representatives across all levels of Pennsylvania government convened at Carnegie Mellon University on July 15 with investors and key leaders in the energy community at the behest of Sen. Dave McCormick (R., Pa.).
A schematic diagram of the Shaft Seal Test Facility. (Image: NERS)
For 2,300 hours, the molten salt pump Shaft Seal Test Facility (SSTF) operated at the University of Michigan’s Thermal Hydraulics Laboratory, according to an article from UM. The large-scale experiment was designed to evaluate shaft seal performance in high-temperature pump systems. Fewer than 10 facilities worldwide have successfully operated fluoride or chloride salts for more than 100 hours using over 10 kilograms of material.
Honoring the achievements and legacy of the WWII generation of nuclear pioneers — and remembering all those affected by Trinity.

By Craig H. Piercy, CEO and Executive Director of the American Nuclear Society
Eighty years ago today, at exactly 5:29:45 a.m. local time* on July 16, 1945, the United States Army detonated the world’s first nuclear bomb in the Jornada del Muerto desert of southern New Mexico. The searing flash and thunderous shockwave marked the culmination of the Manhattan Project, a secret, three-year national effort to harness nuclear fission and hasten the end of the Second World War.
The Trinity Test, overseen by Manhattan Project director Major General Leslie Groves and Los Alamos Laboratory director Dr. J. Robert Oppenheimer, was the final act of that race to build the atomic bomb. Hoisted atop a 100-foot steel tower, the plutonium implosion device, known as the Gadget, unleashed a blast equal to 21,000 tons of TNT and temperatures hotter than the center of the sun.
From ten miles away, observers wearing darkened welder goggles looked on in stunned silence. “We knew the world would not be the same,” recalled Oppenheimer.
Close-up of a superconducting sensor board containing multiple transition-edge sensors (top row of squares), which detect energy released by individual radioactive decay events. (Photo: M. Carlson/NIST)
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
A rendering of the Clinch River SMR. (Image: TVA)
The Nuclear Regulatory Commission has accepted for review the Tennessee Valley Authority’s construction permit application for a BWRX-300 small modular reactor at its Clinch River site in Tennessee. The NRC expects to complete its review by December 2026.
A commercially irradiated, refabricated test rod in an INL hot cell. (Photo: INL)
An article in the OECD Nuclear Energy Agency’s July news bulletin noted that a first test has been completed for the High Burnup Experiments in Reactivity Initiated Accident (HERA) project. The project aim is to understand the performance of light water reactor fuel at high burnup under reactivity-initiated accidents (RIA).
Plaque honoring Frisch and Peierls at the University of Birmingham in England. (Photo: Anthony Cox)
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Concept art of the central cross-section of the Helix Katana stellarator. (Image: Helical Fusion)
Helical Fusion, a private fusion start-up based in Japan, announced it has closed its first round of venture capital financing, securing ¥2.3 billion ($15.6 million) in funding. According to Helical Fusion, this brings the company’s total capital investment—including grants and loans—to ¥5.2 billion ($35.3 million).